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Motivation

Learning causal effects is important for real-life applications:
m Effect of a ‘new medicine’ on ‘blood pressure’ of patients.
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m Multiple data sources cannot be combined or shared due to privacy concern.

nh Vo, Arnab Bhattacha ee, Tze-Yun Leong Federated Learning of Causal Effects, NeurIPS 2022 1/5



Motivation

Learning causal effects is important for real-life applications:
m Effect of a ‘new medicine’ on ‘blood pressure’ of patients.
m Effect of ‘smoking’ on ‘cancer’.
m Effect of ‘coronary heart disease’ on ‘mortality’.

The problems:

CATE

Hospital | ATE® CATE: Conditional Average Treatment Effect
ATE: Average Treatment Affect

m Multiple data sources cannot be combined or shared due to privacy concern.
m Different data sources might have different data distributions.
o Some sources with sufficient data observations might dominate the ones
with fewer data observations.
o This might lead to poor causal estimands.
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Causal quantities of interest

e m Y: the outcome
m W: the treatment

e G‘@ m Z: the latent confounder

m X: the covariate
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Causal quantities of interest

m Y: the outcome
m W: the treatment

(2)
e G‘@ m Z: the latent confounder

m X: the covariate

We estimate

m Conditional average treatment effect (CATE):
CATE(z) = E[Y|do(W=1),X=z] — E[Y|do(W=0), X=z],
m Average treatment effect (ATE):

ATE := E[CATE(X)].
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The proposed method

Expectation of the outcome given intervention on w}
Elyildo(w;), x|
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Augmented representer theorem estimator
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He: a reproducing kernel Hilbert space (RKHS)
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Y

Transfer kernel function

Allow dissimilar data distributions among the sources

Y

Random Fourier feature

Enable federated learning
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Y
Transfer kernel function
Allow dissimilar data distributions among the sources

12
Random Fourier feature CausalRFF: federated learning
. —_—
Enable federated learning causal effects
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The proposed method

The objective function is decomposed to multiple components, each associated
with a source.

J=3"J®  where J© = £® 4 m~1 Y ¢))6¥)3,
s€8 veS
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Repeat the following steps until convergence:
m Compute the gradients using local data in each source and send to a server.
m The sever collects all local gradients and updates the model.

m The server sends the new model to all sources.
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Conclusion & future work

Key contributions:

m We proposed CausalRFF that learns causal effects without sharing raw data.

CausalRFF minimizes information transmitted among the sources, thus
enabling privacy-preserving causal inference.

CausalRFF allows the dissimilar data distributions among the sources.

CausalRFF is an important step towards a privacy-preserving causal learning
model.

The performance of CausalRFF is competitive with the baselines trained on
combined data.

Future work:

m Preserving privacy is important: combining CausalRFF with differential
privacy is an interesting problem to give statistical guarantee.

Thanh Vinh Vo, Arnab Bhattacharyya, Young Lee, Tze-Yun Leong Federated Learning of Causal Effects, NeurIPS 2022 5/ 5



lgements & Disclaimer

This research/project is supported by the National Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme (AISG Award No: AISG2-RP-2020-016).

This work was conducted while YL was at Harvard University and the views expressed here do not
necessarily reflect the position of Roche AG.



