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Motivation
Learning causal effects is important for real-life applications:

Effect of a ‘new medicine’ on ‘blood pressure’ of patients.

Effect of ‘smoking’ on ‘cancer’.
Effect of ‘coronary heart disease’ on ‘mortality’.

The problems:

Hospital (1) Hospital

Hospital (3)

CATE
ATE(1)

CATE
ATE(2)

CATE
ATE(3)

CATE: Conditional Average Treatment Effect
ATE: Average Treatment Affect

Multiple data sources cannot be combined or shared due to privacy concern.
Different data sources might have different data distributions.

◦ Some sources with sufficient data observations might dominate the ones
with fewer data observations.

◦ This might lead to poor causal estimands.
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Causal quantities of interest

Z

Y WX

Y : the outcome
W : the treatment
Z: the latent confounder
X: the covariate

We estimate
Conditional average treatment effect (CATE):

CATE(x) = E
[
Y |do(W=1), X=x

]
− E

[
Y |do(W=0), X=x

]
,

Average treatment effect (ATE):

ATE := E[CATE(X)].
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The proposed method
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Variational inference Maximum likelihood

Augmented representer theorem estimator
J = L̂ +

∑
c

γc∥fc∥2
Hc

.

fc: functions that modulate the above distributions
Hc: a reproducing kernel Hilbert space (RKHS)

Transfer kernel function
Allow dissimilar data distributions among the sources

Random Fourier feature
Enable federated learning

CausalRFF: federated learning
causal effects
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The proposed method
The objective function is decomposed to multiple components, each associated
with a source.

J ≃
∑
s∈S

J (s), where J (s) = L̂(s) + m−1 ∑
v∈S

ζ∥θv∥2
2,

Source (1)

Source (2)

Source (3)

Server

Repeat the following steps until convergence:
Compute the gradients using local data in each source and send to a server.
The sever collects all local gradients and updates the model.
The server sends the new model to all sources.
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Conclusion & future work

Key contributions:
We proposed CausalRFF that learns causal effects without sharing raw data.
CausalRFF minimizes information transmitted among the sources, thus
enabling privacy-preserving causal inference.
CausalRFF allows the dissimilar data distributions among the sources.
CausalRFF is an important step towards a privacy-preserving causal learning
model.
The performance of CausalRFF is competitive with the baselines trained on
combined data.

Future work:
Preserving privacy is important: combining CausalRFF with differential
privacy is an interesting problem to give statistical guarantee.
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